
Influence Dynamics Among 
Narratives: A Case Study of the 
Venezuelan Presidential Crisis
Akshay Aravamudan

Florida Institute of Technology

aaravamudan2014@my.fit.edu

Xi Zhang
Florida Institute of Technology

zhang2012@my.fit.edu

Jihye Song
University of Central Florida

chsong@knights.ucf.edu

Stephen M. Fiore
University of Central Florida

sfiore@ist.ucf.edu

Georgios C. Anagnostopoulos
Florida Institute of Technology

georgio@fit.edu



Motivation

• Given the evident importance of social media on the 
Venezuelan Presidential crisis [1], we want to 
characterize how narratives influence each other through 
Twitter discussions.

Influence Dynamics Among Narratives
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Outcomes

• Provided an interpretable and unambiguous 
representation of these influences via Process Influence 
Measures (PIMs) by modelling data with a multi-variate 
point process.

• Interpreted co-evolving influences among narratives 
under the prism of Granger Causality.

Conclusions

• Strong influences attributed to landmark events.

• Causal influences, if they exist, can be determined.

• We can provide social scientists and analysts with a tool 
to better understand socio-political phenomena.
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• Venezuelan Presidential Crisis

• Began January 10th after inauguration of 
Nicolás Maduro following a widely disputed 
election on May 2018.

• Escalation after Juan Guaidó declared 
himself interim president on January 23rd .

• There was participation both by domestic 
and international parties.

• Data provided by Leidos.

• Over 7 million tweets from December 
25th to February 1st. 

• Over 1 million unique users.

• Each tweet labelled with possibly multiple 
narratives.  

• Only considered narratives present in at 
least 100k tweets, 8 narratives.

Data
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Annotation Strategy

• Non-Negative Matrix Factorization (NNMF) to obtain 
narratives [2].These narratives were then refined and 
formalized by Subject Matter Experts (SME) [3].

• A subset of the tweet were manually annotated with 
narratives by SME.

• These manually annotated tweets were used to train a 
BERT-based multilingual cased multi-label classification 
model [4].

• Narrative based model produced an aggregate light’s 
kappa score of 0.64.

High level observations

• Tweets about Protest and Military dominate.

• Assembly, arrests and protests are strongly anti-
maduro.

Narrative Annotation
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• Dynamics of tweets are modelled as a Multi-Variate Hawkes Process (MVHPs) [5]

• A system of univariate Hawkes processes with a process per narrative.

• The process is uniquely identified by its conditional intensity function 𝜆𝑖(𝑡 ∣ ℋt
−).

• Constructing the intensity function

• Base intensity      --- background influences 

• Self-excitation      --- narratives influencing themselves

• Mutual-excitation --- narratives influenced by other narratives

• Key assumption

• Each event generated is attributed to a single cause.

Methodology: Process Dynamics
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An illustration of the Multivariate Hawkes Process
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• Granger Causality is established for point processes if 𝛼𝑖,𝑗 > 0, 𝑎𝑖,𝑖 > 0.

• Alpha values by themselves are devoid of meaning, since their nature of influence depends on

• Memory kernel choices.

• Timestamps and volume of events.

• Process Influence Measures (PIMs): 

• Provide an un-ambiguous and interpretable representation of intra & inter-narrative influence.

• Identify, for each event, the narrative that is the most likely theorized cause.

• Estimate probability that event of narrative 𝑗 influences events of narrative 𝑖.

• Obtained via frequency counts of probabilities for each potential parent j.

Methodology: Granger Causality for point processes
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• We trained a MVHP on overlapping 2-day windows across the 
time period of interest until a reasonably good fit was attained.

• Each window produced a trained model with parameters, which 
were then used to build PIM heatmaps.

• For ease of interpretation, we associated PIM values with 
keywords: significant – (0.2, 0.6] , strong – ( 0.6, 0.99] and 
decisive (.99,1].

• The overarching trend was self-excitation, with some notable 
exceptions.

• Maduro/legitimate is never influenced by any other narrative.

Case Study: Venezuelan Presidential Crisis
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Some observations from PIMs

• 25th – 26th December, anti-socialism strongly 
influences guaido/legitimate; before the crisis began.

• 11th – 12th January, maduro/legitimate significantly 
influences military; after the first open cabildo.

Results: Venezuelan Presidential Crisis

Video 
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• 12th – 13th January, maduro/legitimate 
significantly influences guaido/legitimate; 
coincides with Guaidó’s arrest.

• 14th – 15th January, arrests decisively influence 
protests.

• 20th – 21st January, military significantly 
influences protests; overlaps with when military 
members rose against Maduro, followed by 
widespread protests.

• 24th – 25th January, anti-socialism significantly 
affect military; wake of protests calling for 
military to relinquish allegiance to Maduro.

Results: Venezuelan Presidential Crisis
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• We presented a tool for exploratory analysis of inter-/intra-narrative influences using point 
processes. 

• We proposed Process Influence Measures (PIMs) as an interpretable representation of 
influences for point processes.

• Regarding the Venezuelan Presidential Crisis.

• We illustrated the utility of PIM evolution in understanding inter-narrative influence.

• Landmark events during the Venezuelan Presidential crisis potentially trigger cross-narrative influences of 
interest, warranting further investigation.

Contributions
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• QR code

• Contact: aaravamudan2014@my.fit.edu

Thank you for your time

You can keep track of our research on our YouTube channel
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• Assumptions

• Memory kernel function 𝜙𝑖,𝑗 (t) --- Exponential kernel. i.e., each event’s influence decays exponentially.

• Additive influences from base, self-excitation and mutual excitation.

• 𝛼𝑖,𝑗 ≥ 0, 𝑎𝑖,𝑖 ≥ 0.

Backup: Training
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• Definition: 

Granger causality is a predictive causality; if history of process A is useful in predicting process B, then A 
Granger causes B.

• Basic principles:

• The cause happens prior to effect,.

• The cause has unique information to contribute to the effect. 

• Autoregressive models for example can also be used to infer Granger Causality.

“A better term might be temporally related, but since cause is such a simple term, we shall continue to use it ”

- Clive Granger

Granger Causality
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• Such claims concerning Granger causality can guide analysts establish causality.

• Human-in-the-loop is essential to validate claims of causality.

• Subject Matter Experts (SMEs) can decide to include other potential exogenous influence to verify 
causality and to put in context.

• If there exists overwhelming causal links (or lack thereof), this model can find them.

• It is up to the SME to discard links (or explain it’s presence) based on real-world evidence and 
update the model.

• This model does not intend to replace the social scientist or analyst, rather aid them. 

Backup: Going from Granger Causality to Causality
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Future Work

• Incorporate

• Exogenous events of potential relevance (e.g., oil prices and news articles) 

• User stances (e.g., pro- or anti-Maduro)

• Investigate coordinated inauthentic behavior and evaluate influence of  Information Operations (IO) 
and platform manipulation

• Can we disentangle inauthentic behavior from these messages ? 

• Are there consistent messages that can be captured by language models ?

Future Work
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