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A need to PREDICT PEAK FLOWS
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Objectives

Investigate the use of machine-learning-based algorithms 

to:

a) assess the relative importance of dynamic and 

static variables in flood response

b) develop predictive models for peak flow response

c) advance flood warning systems
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CAMeLs Data – for 

670 catchments

Regional Models across CONUS
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Methodology
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Data Preprocessing
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Rule-Based Models are “explainable”

• Decision Tree

• Histogram-based Gradient 
Boost Regressor

• Random Forest

Rule-Based

• Linear/LASSO Regression

• Multi-Perceptron (“Neural 
Networks”)

• Kernel (Ridge) Regression

Non-Rule-
Based
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HGBR and RF for predicting peaks 

Ensemble tree-based 

learning algorithms

• HGBR – iterative

• RF - average
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Summary of 

models and 

performance 

metrics

Model

Best 

Validation 

RMSE

Validation 

R2

Histogram Based Gradient 

Boost Regressor
4.08 0.66

MLP (Multi - layer Perception) 4.26 0.63

Random Forest 4.49 0.55

Lasso Regression 4.54 0.58

Linear Regression 4.55 0.58

Kernel (ridge) Regression 4.64 0.56

Decision Tree 4.96 0.5

LSTM 6.08

Summary of performance metrics for all models
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Importance 

of 

Variables

Regional 

dependence for 

predicting peak flows 

across CONUS 

All Flows
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Variable behavior changes in response to flood 

severity

Low-Medium Flows High Flows



LSTM
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Mapping performance to Catchments

HGBR RF
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Mapping performance to Regions

Compares the magnitude of RMSE per Region for three models
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Conclusion

• HGBR and RF: demonstrated promising results for flood 

peak predictions

• Regional dependence of peak-flow predictions noted both 

per model and among models

• Precipitation controls flood response in high-flow events 

but its importance reduces for low-moderate flow events
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Future Direction

• The second phase –

addressing “ungauged” 

catchments

• From “Understanding” 

→ “Application” via an 

operational flood-

prediction framework

Storm 
Detector

Incoming Forecasted 
Precipitation

No Flood; keep 
monitoring storm

Flood; run peak 
predicting model
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