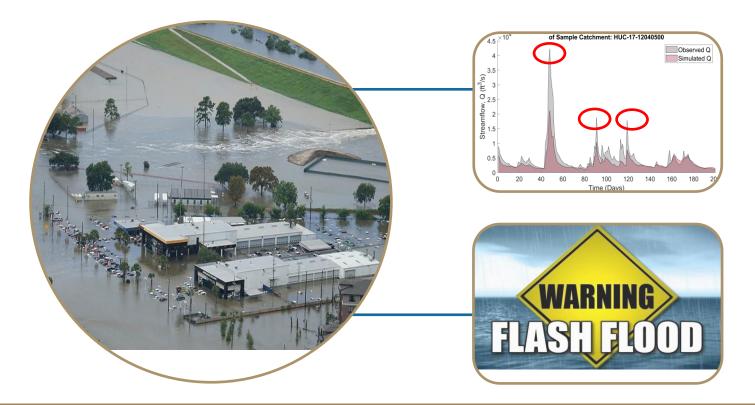


Fall 2020 Meeting H188: Machine Learning in Hydrologic Forecasting I

Machine Learning for Flood Peak Prediction in Ungauged Basins

Zimeena Rasheed, Akshay Aravamudan, Ali Gorji Sefidmazgi, Georgios C. Anagnostopoulos, Efthymios I. Nikolopoulos

A need to PREDICT PEAK FLOWS



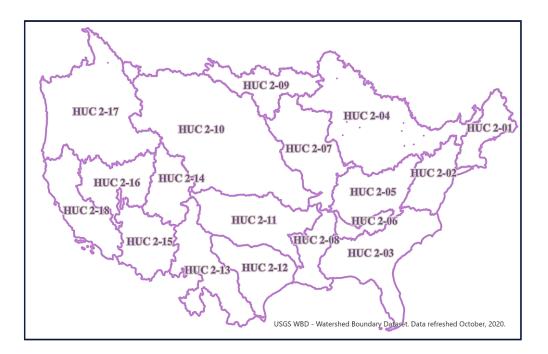
Investigate the use of machine-learning-based algorithms to:

- a) assess the relative importance of dynamic and static variables in flood response
- b) develop predictive models for peak flow response
- c) advance flood warning systems

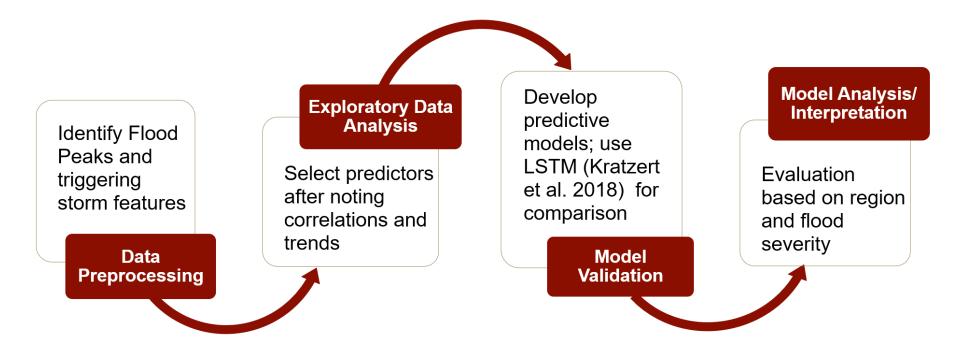
Regional Models across CONUS

CAMeLs Data - for

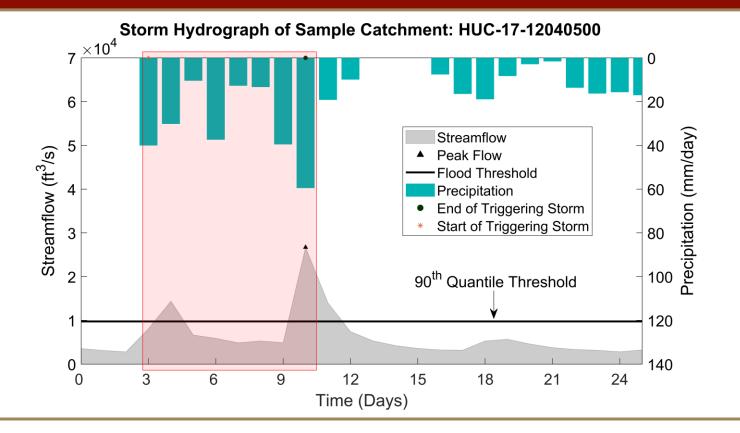
670 catchments



Methodology



Data Preprocessing



Rule-Based Models are "explainable"

Rule-Based

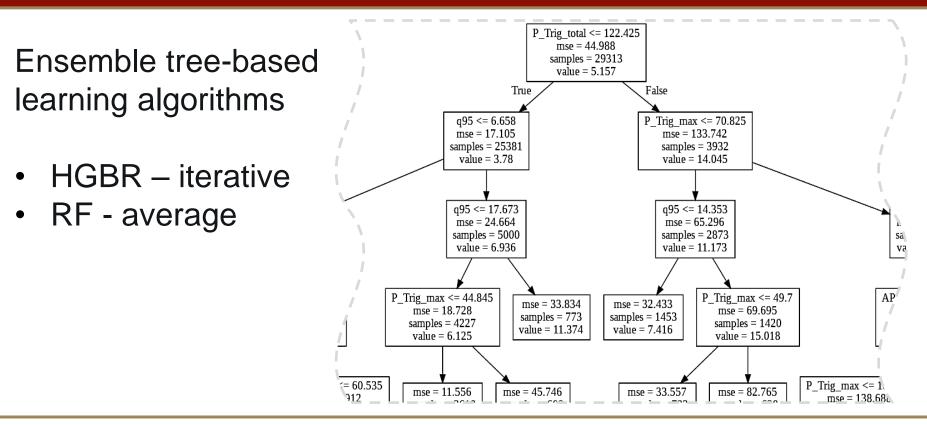
- Decision Tree
 - Histogram-based Gradient Boost Regressor
- Random Forest

Non-Rule-Based

- Linear/LASSO Regression
- Multi-Perceptron ("Neural Networks")
- Kernel (Ridge) Regression

HGBR and RF for predicting peaks

FLORIDA TECH

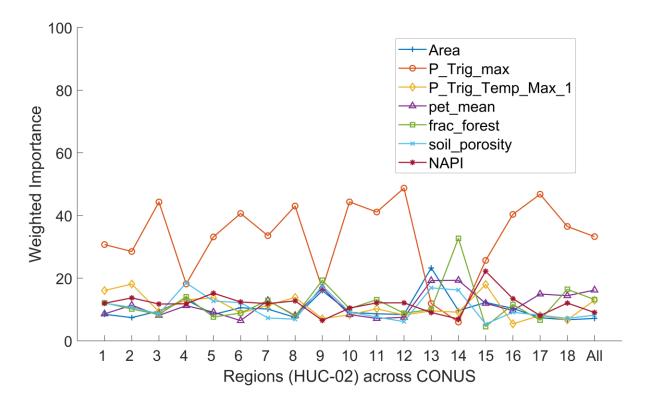


Summary of performance metrics for all models

Model	Best Validation RMSE	Validation R ²
Histogram Based Gradient Boost Regressor	4.08	0.66
MLP (Multi - layer Perception)	4.26	0.63
Random Forest	4.49	0.55
Lasso Regression	4.54	0.58
Linear Regression	4.55	0.58
Kernel (ridge) Regression	4.64	0.56
Decision Tree	4.96	0.5
LSTM	6.08	

Summary of models and performance metrics

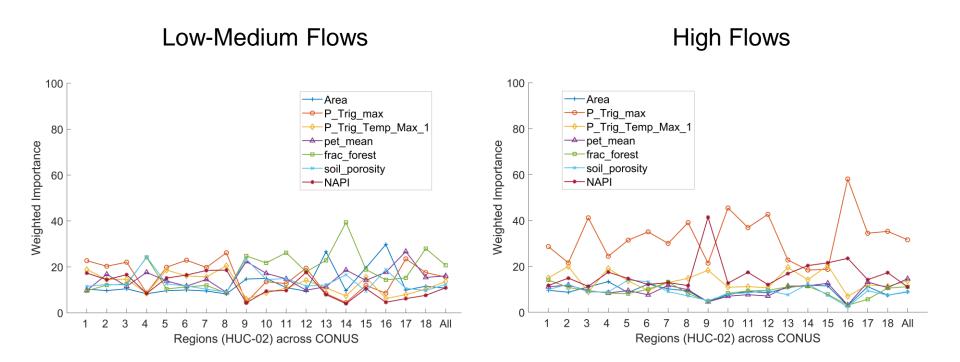
All Flows



Importance of Variables

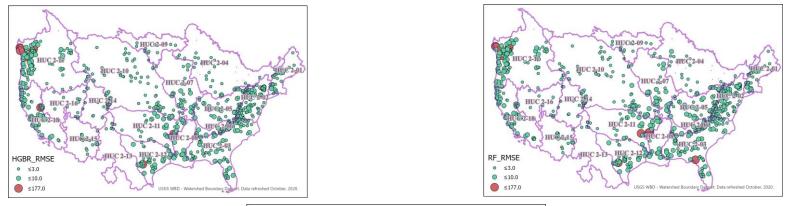
Regional dependence for predicting peak flows across CONUS

Variable behavior changes in response to flood severity



FLORIDA TECH

Mapping performance to Catchments



HGBR

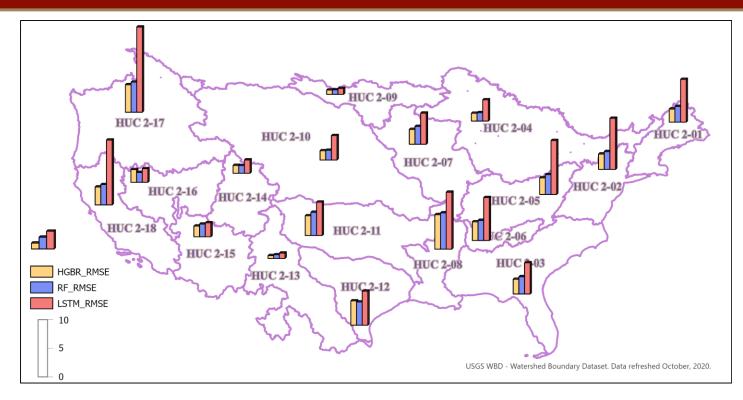
FLORIDA TECH



 RF

LSTM

Mapping performance to Regions



Compares the magnitude of RMSE per Region for three models

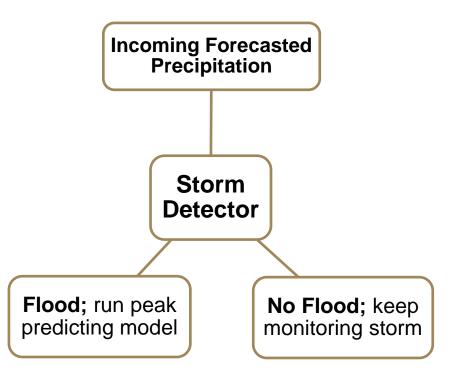
Conclusion

- HGBR and RF: demonstrated promising results for flood peak predictions
- Regional dependence of peak-flow predictions noted both per model and among models
- Precipitation controls flood response in high-flow events but its importance reduces for low-moderate flow events

Future Direction

- The second phase addressing "ungauged" catchments
- From "Understanding"

 → "Application" via an operational flood-prediction framework



References/Acknowledgements

Addor, N., Newman, A. J., Mizukami, N. and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, doi:10.5194/hess-21-5293-2017, 2017

- A. J. Newman, M. P. Clark, K. Sampson, A. Wood, L. E. Hay, A. Bock, R. J. Viger, D. Blodgett, L. Brekke, J. R. Arnold, T. Hopson, and Q. Duan: Development of a large-sample watershed-scale hydrometeorological dataset for the contiguous USA: dataset characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci., 19, 209-223, doi:10.5194/hess-19-209-2015, 2015
- F. Kratzert, D. Klotz, C. Brenner, K. Schulz, & M. Herrnegger. (2018). Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. *Hydrology and Earth System Sciences*, 22, 6005–6022. <u>https://doi.org/10.5194/hess-22-6005-2018</u>

We would like to acknowledge high-performance computing support from Cheyenne (<u>doi:10.5065/D6RX99HX</u>) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

Nikolopoulos and Rasheed would like to acknowledge support from NSF grant # 1934712 (Collaborative Research: Near Term Forecasts of Global Plant Distribution, Community Structure, and Ecosystem Function)

