

Anytime Information Cascade Popularity Prediction via Self-Exciting Processes

Motivation

- counts are generally adopted for prediction.

However,

Consider an MHPP N(t) with ground intensity

$$\lambda^*(t) \triangleq b(t) + \sum_{i:t_i < t} \phi_{m_i}(t - t_i)$$

- Both $b(\cdot)$ and $\{\phi_m(\cdot)\}_{m\in\mathcal{M}}$ are Lebesgue-integrable on \mathbb{R}^+ .
- Marks are unpredictable and follow some distribution g(m).

Contributions

- For general MHPPs, we derived **closed-form** expressions for the **conditional** (on the observed history \mathcal{H}_{t_c}) mean and variance of its counting process N(t) at $t \ge t_c$.
- For anytime popularity prediction, we propose CASPER, a Hawkes process based **predictive** model, which directly minimizes the prediction error.

Xi Zhang¹, Akshay Aravamudan¹, Georgios C. Anagnostopoulos¹ ¹Florida Institute of Technology

Conditional Moments of MHPP

$$f_k(t) \triangleq \frac{1}{\eta} (b * \xi^{*k})(t), \qquad t \ge$$

Theorem 4.2 For $k \geq 1$, the pgf of $N_k(t)$ is given as $G_{N_k(t)}(w) = G_0\left(G^{\circ k}(G_k(w))\right)$

where $G_0(w) \triangleq e^{\eta(w-1)}$, $G^{\circ k}(w)$ is the k-fold composition of $G(w) \triangleq E_m\{e^{\gamma_m(w-1)}\}$, and $G_k(w) \triangleq 1 + F_k(t) (w - 1)$, with $F_k(t)$ be the cdf of the k-th generation event occurrence times.

Theorem 4.7 [Partial] Given
$$\mathcal{H}_{t_c} = \{(t_i, m_i)\}_{i: t_i \leq t_c}$$
. Let $\Delta t \triangleq t - t_c$, then for $t \geq t_c$.
 $E\{N(t|\mathcal{H}_{t_c})\} = N(t_c) + \sum_{k\geq 0} u * \hat{b} * (\gamma\xi)^{*k} (\Delta t)$
where $\gamma \triangleq E_m\{\gamma_m\}$, and $\hat{b}(\Delta t) \triangleq b(\Delta t + t_c) + \sum_{(t_i, m_i)\in\mathcal{H}_{t_c}} \phi_{m_i}(\Delta t + t_c - t_i)$.

Boxplots of APE values for prediction in 4 days ($\Delta t = 4$ days) between our and other models on real-world SEISMIC dataset, with various censoring times. Horizontal bars indicate medians, and the white triangles indicate means.

CASPER's Predictive Training

• Let $S(t_c) \triangleq \{(i, j): 0 < t_i < t_j \le t_c\}$, CASPER's loss function is defined as

$$\left(\boldsymbol{\theta} \middle| \mathcal{H}_{t_c} \right) \triangleq \frac{1}{|S(t_c)|} \sum_{(i,j) \in S(t_c)} \left(E\{N(t_j \middle| \mathcal{H}_{t_i}; \boldsymbol{\theta})\} - j \right)^2$$

True count at time T

Given observation up to t_i , predicted count at time t_i

The model parameters are learned as

 $\boldsymbol{\theta}^* \in \operatorname{argmin} L(\boldsymbol{\theta} | \mathcal{H}_{t_c})$

Tweets Popularity Prediction

CASPER exhibits competitive, if not the best performance, especially for early-stage prediction.

CASPER Python Code: <u>https://github.com/xizhang-cc/casper</u> Correspondence to: Xi Zhang <zhang2012@my.fit.edu>