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Phenomena ‘“rich-get-richer” =) heavy-tailed distribution of cascade sizes.
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Modeling The Hawkes process is a self-exciting process that has been broadly used in modeling cascade dynamics.
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Modeling The Hawkes process is a self-exciting process that has been broadly used in modeling cascade dynamics.

Prediction = The conditional (on the observed history) mean count of fitted Hawkes process is employed.



Contributions

For marked Hawkes Point Process(MHPP) with arbitrary, Lebesgue-
integrable conditional intensity function and unpredictable marks, we
derive closed-form expressions for the conditional (on the observed history

~ H: ) mean and variance of its counting process N(t) att = t.

For anytime popularity prediction, we propose Cascade Anytime Size
Prediction via self-Exciting Regression model (CASPER), a Hawkes process
based predictive model, which is optimized to minimize the prediction error

directly, rather than to maximize the generative likelihood value.
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A Hawkes process N(t) can be equivalently viewed as a
branching process, s.t.
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where N, (t) is k-th generation counting process.
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Conditional Moments Derivation Procedures

A Hawkes process N(t) can be equivalently viewed as a
branching process, s.t.

N = D Ni®

k=0
where N, (t) is k-th generation counting process.

Lemma 4.6
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as N(t.) + N(t —t,)
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Theoretical vs Simulation
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Figure 1: demonstrates that the expressions we derived for the conditional mean
count and its associated variance in Theorem 4.7 strongly match the results obtained
via time-consuming simulations.
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CASPER

* Given H,;_, the observed history up to time ... Formulation

* Consider (,7) s.t. 1; < tj < tc, then Assumption: diffusion as MHPP N (t;0)

(i (0) & (B{N(t;|H.:0)} — j)* (1)

1s the squared loss between the predicted and true count Train

at time £, given observations up to time ;. N )
' 0" c arg il L(6|H,,)
€

e Let S(t.) = {(i,j) : 0 < t; < t; < t.}, CASPER’s
overall loss function 1s defined as

1 Predict

S(t)] DIRTIC) (12)

(2,7)€S(te)

L(6H.,.) =
Npred(t) = E{N(tl?—'{tﬂ 9*)}
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Results on Synthetic Dataset
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Fig 2: Average APE% on Synthetic Dataset

Predictive vs Generative Learning Approach

Models
e GT: M ground truth models
e MSE: B models trained by minimizing the overall loss in
Eq (12) — the predictive learning approach.
e MLL: Bl models trained by maximizing likelihood — the
generative learning approach.

Conclusion
CASPER’s predictive learning approach
e outperforms the generative learning approach.
* highly competitive to the ground truth model.
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Results on Real World SEISMIC Twitter Dataset

Training Requires Algorithms Compared Fig 3a:Short-term prediction with At = 4 hours
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Fig 3b:Long-term prediction with At = 4 days

T CASPER  EE MeSEPTIOE CASPER exhibits competitive, if not the best performance
* OQutperform MaSEPTIDE across all scenarios.
 Competitive to TiDeH for predictions with long observation
periods.
* For early-stage prediction, CASPER attains lowest median,
" - - - but exhibits mean than Eb-MaSEPTIiDE.
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Thanks for watching



