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The conditional (on the observed history) mean count of fitted Hawkes process is employed.



Contributions

For marked Hawkes Point Process(MHPP) with arbitrary, Lebesgue-
integrable conditional intensity function and unpredictable marks, we 
derive closed-form expressions for the conditional (on the observed history 
ℋ𝑡𝑐) mean and variance of its counting process N(𝑡) at 𝑡 ≥ 𝑡𝑐.

For anytime popularity prediction, we propose Cascade Anytime Size 
Prediction via self-Exciting Regression model (CASPER), a Hawkes process 
based predictive model, which is optimized to minimize the prediction error 
directly, rather than to maximize the generative likelihood value. 
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A Hawkes process 𝑁(𝑡) can be equivalently viewed as a 
branching process, s.t.

𝑵 𝒕 =
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where 𝑁𝑘 𝑡 is 𝑘-th generation counting process.
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Figure 1: demonstrates that the expressions we derived for the conditional mean 

count and its associated variance in Theorem 4.7 strongly match the results obtained 

via time-consuming simulations.



CASPER 

Predict

Train

Formulation

Assumption: diffusion as MHPP 
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Models
• GT:          ground truth models
• MSE:         models trained by minimizing the overall loss in 

Eq (12) – the predictive learning approach.
• MLL:         models trained by maximizing likelihood – the 

generative learning approach.

Conclusion
CASPER’s predictive learning approach 

• outperforms the generative learning approach.

• highly competitive to the  ground truth model.

Predictive vs Generative Learning Approach

Fig 2: Average APE% on Synthetic Dataset



• Outperform MaSEPTiDE across all scenarios.

• Competitive to TiDeH for predictions with long observation 

periods.

• For early-stage prediction, CASPER attains lowest median,

but exhibits mean than Eb-MaSEPTiDE.      

Results on Real World SEISMIC Twitter Dataset
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Algorithms Compared Fig 3a:Short-term prediction with 𝛥𝑡 = 4 hours

Fig 3b:Long-term prediction with 𝛥𝑡 = 4 days

Observed history • MaSEPTiDE

Additional fully-
observed cascades

• TiDeH:       designed for larger 𝑡𝑐
• Eb-MaSEPTiDE:       aids for smaller 𝑡𝑐

Training Requires

CASPER exhibits competitive, if not the best performance



Thanks for watching
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